
CHAPTER 5

Romeo and Juliet, Spontaneous Pattern

Formation, and Turing’s Instability

Bernold Fiedler

1. Turing dreams

Crystals, snow flakes, soap bubbles, water waves, dunes, mountain valleys,
pine cones, embryonic development, sunflowers, sea shells, zebra stripes, heartbeat
and nerve tremors: Nearly everywhere we find ordered structures and patterns,
regularities that arise as if “by themselves”. This “by themselves”: Does it not
sound evasive – not-knowing, or not wanting to know? So we ask: How does this
“by themselves”, this “self-organization”, work? How can shape and form bring
themselves to bear, form and develop themselves from undifferentiated uniformity?
How can creation so assert itself and unfold against the omnipresent powers of
dissolving, of sinking back into entropic leveling and amorphous homogeneity? And
so we may continue asking, astonished and perplexed.

Such questions merit a life’s work and are not to be shrugged off with a lecture
or a short article. Alan M. Turing (1912–1954) in his work during the year 1952
(see Reference [11]) developed ground-breaking insights into the problem of “self-
organization” or “morphogenesis”, and they still exert a lively influence. This is
the same Turing who, aged 26, had laid the foundations for the modern theory of
computability and the architecture of computers. During the Second World War
he was deeply involved in the deciphering of the German military’s secret cipher
Enigma. But let us put all this aside, and return to his approach to morphogenesis.

Assuredly, form may be imprinted from the outside, or even be laid out in the
germ, invisible to us, but nevertheless pre-formed. Soap skins for instance, stretched
across wire shapes, try to minimize their energy, so that they take the wonderfully
elegant forms of minimal surfaces. For the virtuoso mathematics of such optimality
questions see the book of Hildebrandt and Tromba [6], or the article by D. Ferus
in this book. But what if we do not impose any spatial structure in advance – or
microscopically minimal random fluctuations, at most, of an initially homogeneous
distribution? Must not such fluctuations immediately smooth out by diffusion?
What would we think of a “self-organized” bath tub that un-mixed already well-
tempered water “by itself”: cold water to the feet and hot to the head? A crackpot,
a dreamer, might fall for this – but not us! Monstrous phantom of an overheated
head in urgent need of cooling . . .
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Absolutely right, the bath tub does nothing like that – at least, not on realistic
time scales. But Turing predicted correctly that structure can nevertheless arise
“spontaneously”, in a mathematically precise sense, from the interplay of spatially
homogeneous reaction laws and spatially leveling diffusion. This very dream has
been confirmed since by analysis, experiment and by computer-simulations. Be-
lousov and Zhabotinski have discovered time oscillating chemical reactions – and,
by the way, against the fierce resistance of those who held this to be mischief and
contempt for the principles of thermodynamics. The many space-time structures
that appear in such experiments substantiate Turing’s dream.

Unfortunately Turing’s original work required a proficiency in the analysis of
ordinary and partial differential equations, that – today as then – is to be gained
only through many years of serious mathematical study: proficiency in a key in-
tellectual technology, now vanishing from among our mathematics teachers and
student-teachers, or officially discouraged. In this article we shall first try to illus-
trate the mathematical essence of Turing’s idea, requiring only the basic rules of
arithmetic – and alert attention.

As a parable for the methods of mathematical dynamics we shall take the well
known love story of Romeo and Juliet. Shakespeare will, I hope, forgive us for this
intrusion into the love life of the immortalized couple. The claim of our essay is
not literary. And in no case should the professional qualifications of marriage and
partner counsellors be reduced to a mathematical diploma. But from our glimpse
into questions of life and love we will learn intimately about a very rich supply of
phenomena in the mathematical theory dynamical systems. At any rate, rather in
this direction than the opposite.

2. Romeo and Juliet

Rather than conceiving of the love between Romeo and Juliet in words, like
Shakespeare, or in music, like Prokofiev, these affairs of the heart will be vested
into our arid formulae: only as a parable, as already said, for Turing’s idea of
morphogenesis. Be warned one last time, but urgently so, against the risks and
side effects of excessive real life imitation.

So let Jn be the love that Juliet bears in her heart for Romeo on evening n.
Here n = 1 or n = 2 or any other natural number: briefly, n = 1, 2, 3 . . . The
numerical value of Jn may be positive or negative – as the case may be. A numerical
value Jn = 0 on our scale of love temperature will, somewhat shabbily, denote
that desirable state of gentle happiness which, through the suppression of youthful
enthusiasm towards ever increasing Jn, prudently avoids the catastrophe well known
from literature.

If Juliet had the gift not to heed her beloved Romeo too much, her behavior
might be described by the dynamics

(2.1) Jn+1 = Jn

This formula expresses that Juliet’s love Jn continues to the next evening n + 1
with Jn+1 exactly the same as on the previous evening. Naturally it is only an
assumption that the nickname Konstanze might suit Juliet; though this was the
name of the wife of Wolfgang Amadeus Mozart, who most probably did not follow
(2.1) truly.
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Table 2.1. The six day love cycle of Romeo and Juliet; see (2.2), (2.3).

n 1 2 3 4 5 6 7 8 9 · · ·

Jn 1 1 0 −1 −1 0 1 1 0 · · ·
Rn 0 −1 −1 0 1 1 0 −1 −1 · · ·

Distinct from Shakespeare’s, and quite the opposite to faithful Juliet, your
modern Romeo is a fickle fellow:

(2.2) Rn+1 = −Jn .

His love temperature Rn+1 on evening n + 1 thus responds to Juliet’s affection
Jn > 0 of the previous evening with a cold shoulder: “I’ve got her in the bag,
time to look elsewhere”, that’s his creed. Only when Juliet’s love cools noticeably,
Jn < 0, he turns truly sorry: Rn+1 > 0, and Juliet is again the sole queen of his
roving heart.

Naturally this does not pass Juliet by unnoticed, as (2.1) would have it: we
therefore replace (2.1) by

(2.3) Jn+1 = Jn + Rn .

This means that Romeo’s affection Rn > 0 of the previous evening kindles the
flame of Juliet’s love. But a cold shoulder Rn < 0 understandably dampens Juliet’s
affection. We now combine (2.2), (2.3) in an abbreviated form:

(2.4) zn+1 = Azn .

Here the number pair zn = (Jn, Rn) describes the state of our lovers on evening n,
while Azn = (Jn + Rn,−Jn) simply abbreviates the application of the right sides
of (2.2) and (2.3).

Anyone who cares to may now program the recipe (2.4) and – completely
independently of zodiac sign, moon phase and biorhythm – calculate the “love
vector” zn on and on, for all time.

Even old-fashioned paper and pencil are sufficient; see Table 2.1. The initial
values J1 = 1, R1 = 0, alias z1 = (J1, R1) = (1, 0), are chosen arbitrarily. Substi-
tuting into (2.2), (2.3) with n = 1 yields z2 = (J2, R2). Substituting again, with
n = 2, gives z3 = (J3, R3) and so on. See Figure 2.1 for a plot of the time evolution
for n = 1, 2, 3, . . . A plot of the points (Jn, Rn) in the (J, R) plane is worthwhile.

Directly from Table 2.1 we observe that the love vector zn repeats with a period
of exactly six days:

(2.5) zn+6 = zn .

This happens not just for our special choice z1 = (1, 0) but for every arbitrary
initial combination z1 = (J1, R1). Figure 2.1 clearly illustrates the time-phased
oscillation between affection and antipathy of both partners. The obvious cause
is Romeo’s immature philandering. But Juliet could moderate these perpetually
changing feelings. She might, for example, take Romeo a little less to heart: purely
mathematically, replacing (2.3) with

(2.6) zn+1 = Jn + 0.9 ∗Rn .

But we are not in therapy here.
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Figure 2.1. The six day love cycle of Romeo (∗) and Juliet (◦)

3. Roberto and Julietta

What Shakespeare did not know: Juliet has a twin sister Julietta. Monozygotic,
mathematically identical twins. And Romeo likewise has a twin brother Roberto.
And Roberto and Julietta are just such a romantic couple as Romeo and Juliet are.

Wherefore, such revelation? The construction is so whimsical that we would
toss aside any novel based on such a premise. For our mathematical attempt,
however, to understand spontaneous pattern formation and morphogenesis à la
Turing, this construction fulfills an important purpose. We are interested in whether
the identical relationships of the two identical romantic couples will develop in an
identical way. They must, quite obviously. Or must they?

We denote by J ′
n (read: Jn prime) and R′

n the love states of Julietta and
Roberto on evening n, respectively. Exactly as in the previous section

(3.1) J ′
n+1 = J ′

n + R′
n R′

n+1 = −J ′
n.

Julietta and Juliet, resp. Roberto and Romeo, are born from the same mold,
even in their relationships. Subtle differences between identical genetic influences
and different imprints through environmental factors are virtually absent from our
parable. For example, the vector z′n = (J ′

n, R′
n) is again sentenced to a love cycle

of period six:

(3.2) z′n+6 = z′n,

just as zn before in (2.5), and without any hormonal basis. As in (2.4) we can
abbreviate

(3.3) z′n+1 = Az′n.

Here the prescribed map A has no apostrophe (A′), since the z′n indeed follow the
same law A as the zn do.

We certainly do not plan to assume that z′n = zn for all n = 1, 2, 3, . . . For
example, maybe z′1 6= z1: the two couples may have known each other a different
length of time on the reference day n = 1. Aha, a little tidbit of environment may
creep in through this backdoor! In consequence, z′n 6= zn for all n = 1, 2, 3, . . .
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Where now is morphogenesis? Both couples experience essentially the same.
No surprise, since each couple remains blind and deaf to the other couple and to
all the rest of the world. But soon this will change.

4. When sisters gossip . . .

We have expressed in formulae how the “love vector” zn resp. z′n develops,
for each of the two romantic couples. Now we defer these considerations, for a
moment, and examine the mutual influences of the respective sibling couples. As a
simplification we first assume that only the sisters Juliet and Julietta relate their
adventures, but not the brothers. The brothers will return in section 5.

How should a formula express the sisters’ habit of daily gossip? We write

(4.1) Jn = J̄n + s ∗ (J̄ ′
n − J̄n).

Here Jn again measures Juliet’s love on the evening of day n. The new symbol J̄n

(read: Jn-bar) denotes Juliet’s love on the morning of day n, after she has met
Romeo. Similarly J̄ ′

n (read: Jn-bar-prime or Jn-prime-bar) measures Julietta’s
love temperature on morning n. The star, ∗, denotes conventional multiplication.
The gossip susceptibility s describes how much Juliet (J̄n) is influenced daily by
Julietta (J̄ ′

n). Typically, s will be a fixed number between 0 and 1, i. e. 0 ≤ s ≤ 1.
The case s = 1 leads to

(4.2) Jn = J̄ ′
n .

Perhaps Juliet thinks: “. . . oh, this Roberto must be just awesome, from what
Julietta tells. Hm, and my Romeo is his twin brother after all. Maybe he didn’t
mean it yesterday, when he was so boorish to me.” By the evening Juliet has fully
slewed round to Julietta’s line, so Jn = J̄ ′

n.
The case s = 0 describes the other extreme:

(4.3) Jn = J̄n.

Juliet does not give a damn about Julietta’s gossip and sticks to her own opinion:
a true Konstanze.

Values such as s = 0.5 = 50%, or 30%, 70%, etc. mix these two extremes to
different degrees. We see that the susceptibility s simply describes the degree to
which Jn responds in the direction of the difference J ′

n − Jn.
Let us return to the general case (4.1) which covers all those hybrid forms.

Since Julietta is the twin sister of Juliet she is influenced reciprocally by Juliet –
by the same law. Her evening love J ′

n will thus follow

(4.4) J ′
n = J̄ ′

n + s ∗ (J̄n − J̄ ′
n).

We obtain (4.4) from (4.1) by dropping the apostrophe where there was one, and
introducing one where there was none. Following the same scheme we have already
obtained section 3 from section 2, for example (3.1) from (2.2), (2.3). This works,
because of our twin assumption.

What has this to do with Turing? Along with Turing we are interested in the
differences of the genetically identical twin pairs. We therefore form the difference
of (4.4) and (4.1) and obtain

J ′
n − Jn = J̄ ′

n + s ∗ (J̄n − J̄ ′
n)− (J̄n + s ∗ (J̄ ′

n − J̄n)) =

= (1− 2s) ∗ (J̄ ′
n − J̄n).

(4.5)
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The difference between the sisters is thus reduced by the factor 1−2s. For 0 ≤ s ≤ 1
this fraction has an absolute value between 0 and 1 (ignoring the sign). In the case
s = 0 nothing changes, because both sisters are Konstanzes. In the case s = 1 the
rôles of the sisters reverse. The middle course s = 0.5 = 50% leads to perfect and
immediate harmony J ′

n − Jn = 0 (of the sisters) and hence

(4.6) J ′
n = Jn =

1

2
(J̄ ′

n + J̄n) .

The women cleverly agree on the arithmetic mean and so sort out their sibling
differences. The compensating leveling influence of gossiping, setting a trend for
each 0 < s < 1, is most pronounced here.

We now have both ingredients ready to realize Turing’s idea: the dynamics
proper of each romantic couple, and the compensating leveling function of the
gossiping sisters. Let us combine the two effects. As in section 2 the nightly
encounters of Romeo and Juliet lead to

J̄n+1 = Jn + Rn

R̄n+1 = −Jn.
(4.7)

Here we have transcribed (2.2), (2.3) and replaced (Jn+1, Rn+1) by (J̄n+1, R̄n+1):
at the end of the love night we have arrived at the morning of day n + 1, and with
the inquisitive sisters we await the latest news. Correspondingly, for Roberto and
Julietta,

J̄ ′
n+1 = J ′

n + R′
n

R̄′
n+1 = −J ′

n.
(4.8)

On day n + 1, for Romeo, Rn+1 = R̄n+1; he remains uninfluenced by his brother
Roberto until the next evening. For Juliet we substitute the gossip dynamics (4.1)
– of course with n + 1 instead of n, since we are already in day n + 1:

(4.9) Jn+1 = J̄n+1 + s ∗ (J̄ ′
n+1 − J̄n+1).

Substituting (4.7), (4.8) into (4.9) yields (with a little pencil and paper)

Jn+1 = Jn + Rn + s ∗ (J ′
n − Jn) + s ∗ (R′

n −Rn)

Rn+1 = R̄n+1 = −Jn

(4.10)

for Romeo and Juliet on the next evening n + 1.
Our apostrophe trick from (4.4) yields the corresponding equations for Roberto

and Julietta:

J ′
n+1 = J ′

n + R′
n + s ∗ (Jn − J ′

n) + s ∗ (Rn −R′
n)

R′
n+1 = −J ′

n.
(4.11)

The casting of our four actor drama is now almost complete, but somewhat
confusing. We simplify in terms of the arithmetic means J+

n , R+
n and differences

J−
n , R−

n , defined as follows:

J±
n =

1

2
(Jn ± J ′

n)

R±
n =

1

2
(Rn ±R′

n).

(4.12)



Romeo and Juliet 63

The symbols ± can be read either as + or as −, but consistently in all places.
Now, along with Turing, we are most interested in the differences J−

n , R−
n of the

genetically identical sibling pairs. For example, (4.5) now reads

(4.13) J−
n = (1− 2s) ∗ J̄−

n .

On adding the equations (4.10), (4.11) we obtain

J+
n+1 = J+

n + R+
n

R+
n+1 = −J+

n

(4.14)

and, by fearless subtraction,

J−
n+1 = (1 − 2s) ∗ (J−

n + R−
n )

R−
n+1 = −J−

n .
(4.15)

Still four equations, like (4.10) and (4.11), but now neatly uncoupled. For example
(4.14): These are exactly the same equations as (2.2), (2.3), discussed in section 2,
just featuring other letters: J+

n , R+
n in place of Jn, Rn. Consequently the mean val-

ues z+
n = (J+

n , R+
n ) in our total system including the gossiping sisters also oscillate

lustily with love period 6:

(4.16) z+
n+6 = z+

n .

And how about the differences z−n = (R−
n , J−

n )? Clearly z−1 = (R−
1 , J−

1 ) = (0, 0)
leads, by (4.15), successively to

(4.17) z−n+1 = z−n = . . . = z−2 = z−1 = (0, 0).

We simply have two identical copies of the same lovers and the consistently unani-
mous sisters might as well have spared their gossiping s.

Figure 4.1 illustrates the effect of the gossiping sisters for initial values z−1 =
(J−

1 , R−
1 ) = (1, 0) and different values of the gossip susceptibility s. For 0 <

s ≤ 0.5 = 50% we observe that the increasing gossip susceptibility of the sisters
increasingly dampens the differences z−n = (J−

n , R−
n ) towards zero. This holds for

the brothers R−
n too, although they have never once talked to each other about their

sweethearts, cool as they are. When 50% < s < 75% we see two-day oscillations at
first, because the sisters gossip too much. But still these oscillations dampen out
and the two couples synchronize at last. Readers with some amatory experience
will recognize this effect, won’t they?

Gossip addicted sisters with s > 75%, however, head directly into catastrophe.
Both couples experience an increasing, ever worsening, Up and Down of love-hate
cycles, affection and dislike, that may eventually tragically destroy both relation-
ships. The vicious cycle grows, independently of how minute the differences z−1
might have been initially, and finally overwhelms the 6-day cycle of the mean val-
ues z+

n . Juliet and Julietta are consistently at odds in their feelings, and so are
Romeo and Roberto. The effects on such different characters as Romeo and Juliet
are remarkable: Both experience an ever increasing affection, or dislike, for each
other – despite substantially different “love strategies” – in complete synchrony.

Thus Turing’s instability dreadfully affects our two paradigmatic couples of
loving sweethearts. Despite the virtually identical initial conditions of the iden-
tical pairs, and even discounting the leveling influence of the sisterly gossip, the
differences z−n finally turn catastrophic.
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Figure 4.1. Gossiping sisters lead to Turing instability; ◦ = J−
n , ∗ = R−

n

And the moral? Gossip a little, ye ladies, but not too much. The border lies
at 75%! Oh, well – in our model . . .

5. . . . and brothers brag

The Turing instability of the two romantic couples can equally well be caused
by the brothers Romeo, Rn, and Roberto, R′

n. We simply have to transfer the
discussion of the previous sections regarding the sisters, Jn and J ′

n, to the brothers.
Experienced in modeling issues of love, as we have since become, we can now
abbreviate the interpretation of the individual steps.

Analogously to (4.1), (4.9), on day n + 1 Romeo’s evening love Rn+1 for Juliet
is given by

(5.1) Rn+1 = R̄n+1 + p ∗ (R̄′
n+1 − R̄n+1),

after his twin brother Roberto, R̄′
n+1, during bright daylight, has sufficiently en-

flamed or chilled him with his night-time stories of Julietta. The brag parameter p
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is chosen fixed again, with 0 ≤ p ≤ 1. In section 4, for example, we have chosen
p = 0. Conversely, then, we of course have

(5.2) R′
n+1 = R̄′

n+1 + p ∗ (R̄n+1 − R̄′
n+1),

analogously to (4.4). This time the sisters remain stoically unimpressed:

(5.3) Jn+1 = J̄n+1, J ′
n+1 = J̄ ′

n+1.

This corresponds to the choice s = 0 in the previous section.
The total system for the two romantic couples, this time, reads

Jn+1 = Jn + Rn

Rn+1 = −Jn − p ∗ (J ′
n − Jn)

(5.4)

J ′
n+1 = J ′

n + R′
n

R′
n+1 = −J ′

n − p ∗ (Jn − J ′
n)

(5.5)

in analogy to (4.10), (4.11). In terms of the variables J±
n , R±

n from (4.12) which
express the sibling mean values (+) resp. differences (−), our system is

J+
n+1 = J+

n + R+
n

R+
n+1 = −J+

n

(5.6)

J−
n+1 = J−

n + R−
n

R−
n+1 = −(1− 2p) ∗ J−

n .
(5.7)

This resembles (4.14), (4.15), but not quite. Certainly the mean values z+
n =

(J+
n , R+

n ) again follow the path of a single romantic couple with a six day love
cycle, zn+6 = zn, unperturbed by the brothers’ bragging p.

Figure 5.1 illustrates the effect of the brothers’ bragging for initial values z−1 =
(J−

1 , R−
1 ) = (1, 0) and various values of the brag parameter p. For 0 < p ≤ 50% we

concede the soothing influence of bragging among brothers, which, in its own way,
serves to exchange information and to balance tempers, much as the sisters’ gossip
did.

Mathematically there is no difference between (4.1), (4.4) on the one hand and
(5.1), (5.2) on the other: We have only replaced the letter J by R, and s by p. The
effects on the total system, however, are different, caused by the fundamentally
different attitudes of the twin brothers.

Indeed, for p = 48% we notice a clearly decelerated stabilization. Already
for a brag parameter p > 50% the differences z−n = (J−

n , R−
n ) grow ever faster,

again directly into catastrophe. Again the catastrophic differences z−n between the
siblings triumph over the 6-day-cycle of the arithmetic means z+

n = (J+
n , R+

n ). The
progression is quite different, however, from when the sisters gossip. Take Juliet,
Jn, for example. Since

Jn =
1

2
(J+

n + J−
n )

she is wafted into an ever more ecstatic state of bliss, just as in Shakespeare. Romeo
follows her according to

Rn =
1

2
(R+

n + R−
n ) ,
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Figure 5.1. Bragging brothers induce Turing instability; ◦ =
J−

n , ∗ = R−
n .

even if at a measured distance. For Julietta, however, things look rather different.
According to

J ′
n =

1

2
(J+

n − J−
n )

the unbounded increase of the values J−
n forces her into the repulsive region of

increasing negativity. Again Roberto mimics her disdain:

R′
n =

1

2
(R+

n −R−
n ),
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Figure 6.1. Domain of Turing instability (black), when sisters
gossip (s) and brothers brag (p).

if hesitantly. Thus while Romeo and Juliet might be heading towards their immor-
tal literary catastrophe of unimpeded love, Roberto and Julietta just as quickly
settle on divorce, purportedly due to irreconcilable differences, and despite math-
ematically exactly equal genetic dispositions. But in reality because of Turing’s
instability.

And the moral? Brag a little, ye merry gentlemen, but not too much. The
critical border lies at 50% – and that is less than the critical 75% for women! Oh,
well – in our model . . .

6. Turing’s theorem

The preceding sections have illustrated Turing’s idea on instability in terms
of a single parable. The idea, however, reaches far beyond our simple example
and our more or less amatory interpretations. Turing’s result of 1952 [11] can be
summarized approximately as follows.

Theorem. Identical individually stable systems can become destabilized by inter-
actions which, in themselves, would appear to stabilize.

Our formulation may not be fully rigorous, but it captures the essence. The “sys-
tems” are, in our parable, the two couples, identical as monozygotic twins can ever
be. The interactions in section 4 are the gossiping susceptibility s of the sisters,
resp. the brag parameter p of the brothers in section 5. In themselves, s and p are
stabilizing, as long as 0 < s < 1, 0 < p < 1, since they reduce the differences by a
daily factor 1− 2s resp. 1− 2p. Turing instability of the total system nevertheless
strikes at s = 75%, resp. p = 50%.

We can also study, without much effort, the hybrid forms that arise from a
more or less intense daily exchange between both sibling pairs; cf. Figure 6.1. The
corresponding equations are

Jn+1 = Jn + Rn + s ∗ (J ′
n − Jn) + s ∗ (R′

n −Rn)

Rn+1 = −Jn − p ∗ (J ′
n − Jn) .

(6.1)

with corresponding equations for J ′
n+1 and R′

n+1; see (4.10) and (5.4). For the mean
values J+

n , R+
n we find clear 6-day-cycles as in sections 2, 4 and 5. The differences
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J−
n , R−

n obey

J−
n+1 = (1 − 2s) ∗ (J−

n + R−
n )

R−
n+1 = −(1− 2p) ∗ J−

n .
(6.2)

This time (4.15) resp. (5.7) appear as the special cases p = 0 resp. s = 0. Figure 6.1
sketches how the behavior patterns of the differences J−

n , R−
n of section 4, resp.

section 5, correspond to the points of the s-axis p = 0 (resp. of the p-axis s = 0)
and carry over to the hybrid cases. For the interpretation of the different monotone,
oscillatory and alternating regions see Figures 4.1 and 5.1.

A small geometrical, one might say “gender specific”, difference is perhaps
worth noting. Each horizontal line (except p = 50%) intersects the Turing insta-
bility region – but no vertical line with 25% < s < 75%. Thus the brother-siblings
alone, as well as the sister-siblings, can affect the total system through a clever
choice of their respective parameters p resp. s. Moreover, the sisters, by an unclever
choice, too large or too small, of their gossip susceptibility s, can maneuver both
relationships into instability, provided p 6= 50%: femmes fatales. Conversely, smart
sisters have it in their power to stabilize both relationships beneficially, through
the choice 25% < s < 75%, a healthy – but not exaggerated – gossipiness. The
philandering brothers may then, with 0 < p < 100%, brag as they please: The
smart sisters have indestructibly stabilized both their relationships.

Every theorem requires a proof, as everyone has known since Euclid’s geometry
at least – otherwise it has no claim to mathematical validity. We have not proved
Turing’s theorem here – we have phrased it too vaguely, and within the amatory
confines of this article, as already indicated, we lack the mathematical tools, by
far. For an indication of the mathematical framework, though not the proof, we
refer to section 7. Turing’s groundbreaking achievement lay, however, less in the
computations involved in proving Theorem 6.1. The breakthrough of this genius of
the century lay much more in the profound insight that this mechanism of insta-
bility is, paradoxically, mathematically at all possible, and might serve to elucidate
pattern formation and morphogenesis – against all entropically leveling forces such
as gossiping, bragging, etc.

Tragically, the year 1952 marked not only this last scientific triumph in the
life of Alan Turing, but also the year of his social ostracism. See for example
the brief account in [7]. He was arrested for “gross indecency” as a homosexual,
and brought to trial. Sentenced to psychoanalysis and hormone “treatment”, he
committed suicide in 1954.

7. Mathematical summary

For the more mathematically inclined reader we give a short synopsis of the
mechanism that underlies Turing’s instability and the adaptation sketched above.
The mathematically less ambitious may safely skip this section for now.

A linear iteration

(7.1)
z̄n+1 = Azn

z̄′n+1 = Az′n,
A =

(

1 1
−1 0

)
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for zn ∈ IR2 was introduced in sections 2 and 3. The components of zn = (Jn, Rn)
were called Juliet and Romeo from then on. The matrix A has eigenvalues exp(±iπ/3),
which are sixth roots of unity. Hence the period six of all zn.

Gossiping, resp. bragging, follows the equations

(7.2)
zn+1 = z̄n+1 + D(z̄′n+1 − z̄n+1)

z′n+1 = z̄′n+1 + D(z̄n+1 − z̄′n+1),
D =

(

s 0
0 p

)

.

Together, (7.1) and (7.2) imply

zn+1 = Azn + DA(z′n − zn),

z′n+1 = Az′n + DA(zn − z′n) .
(7.3)

The manifest linear ZZ 2-symmetry of the linear “twins”-iteration of (zn, z′n) ∈ IR4

decomposes into representations ±id via the coordinates

(7.4) z±n :=
1

2
(zn ± z′n).

Thus (7.3) uncouples to

z+
n+1 = Az+

n

z−n+1 = (id− 2D)Az−n .
(7.5)

The homogeneous part z+
n knows nothing of D. The difference part z−n+1 – this is

the essence of Turing’s idea – can be unstable, even though A itself and (id− 2D)
are each stable.

It is well known that the stability of a matrix iteration (with simple eigenval-
ues) is determined by the spectrum of the matrix. Stability then means that all
eigenvalues lie in the (closed) complex unit disk in CI . Instability sets in as soon
as at least one eigenvalue lies outside the unit disk. From the stability of A and
(id − 2D) it does not follow that the product of the two matrices is stable. This
is the very essence of Turing’s idea. In section 4 instability was generated by an
eigenvalue µ < −1 of the matrix product, and in section 5 by µ > 1.

This idea is of course not confined to our special choices of A, D – nor to
our wrapping parable – nor to zn ∈ IR2. Nonlinear systems can be described as
well, and globally, together with spatio-temporal pattern forming bifurcations which
arise from the germ of a Turing instability; see, for example, the author’s work [1]
mentioned in the list of references.

Turing was actually interested in reaction-diffusion equations of the form

(7.6) ∂tz = D∆xz + Az

Here z = (z1, . . . , zn) ∈ IRn, x ∈ Ω ⊂ IRN , ∆x is the Laplace operator with appro-
priate boundary conditions on Ω, and z = z(t, x) is the pattern forming solution
in time t and space x that we seek. The diffusion matrix D is positive diagonal,
as in our example, and A is an almost arbitrary n× n-matrix which describes the
linearization of some “reactions”. For A = 0 this provides the entropically leveling
influence of the uncoupled heat equation for the components z1, . . . , zn. Stability
is also assumed for D = 0:

(7.7) Re spec A < 0 ;
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the eigenvalues of A should have negative real part. Now let λ > 0 be an eigenvalue
of −∆x on Ω, corresponding to a “resonance” of the region Ω. It does not follow
that the stability condition

(7.8) Re spec (−λD + A) ≤ 0

holds. In particular the interaction of the reaction matrix A with the diffusion
matrix D 6= id may lead to instability of the individual z-components, that is, to
Turing instability.

In our essay this result has been reduced to its simplest possible form: A
region Ω = two points, the two sibling pairs, and discrete time. In this way we
have circumvented even that last vestige of differential calculus which is genuinely
innate to any culture of the continuous.

8. Outlook

Murray’s eminent book [10] teems with inspiring illustrations of conjectured
effects of Turing instability in animals: see Figure 8.1. The mathematician does

Figure 8.1. A Turing goat: courtesy of [10].

not flinch at renaming Romeo/Juliet (resp.Roberto/Julietta) to become the rear-
(resp. front-) ends of a goat – instead of Jn and Rn one can employ other letters and
circumstances without further ado. The modeling can then describe completely dif-
ferent interdependencies than the chemistry of love affinity: The abstract possibility
of a Turing instability persists. The instability of section 5, where Romeo/Juliet
float away into their realm of bliss, while Roberto/Julietta plunge into the perdi-
tion of divorce, expresses itself less dramatically, but all the same visibly, in a white
rear- (resp. black front-) end.
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Figure 8.2. Snapshot of rotating oxidation pattern on a plat-
inum catalyst, resolved by photo electron emission microscopy. Ob-
ject size 300µm (Fritz-Haber-Institut der Max-Planck-Gesellschaft,
Berlin)

Whimsical? The exact molecular biological basis is being contested. Solid
molecular evidence is required, for reactions and interactions, to substantiate Tur-
ing’s far-reaching dream on morphogenesis, way beyond mere mathematics. Life-
time achievements of Christiane Nüsslein-Volhard on drosophila, and Chica Schaller
on hydra, should at least be mentioned here. The chemistry of time oscillating reac-
tions and catalysis on platinum surfaces also provides well understood and modeled
patterns, very close to Turing’s ideas, and even temporally variable; see Figure 8.2.
For comprehensive ongoing research material, above all from physics and chem-
istry, see the work of Gerhard Ertl and his group, for example, and also the series
published by Hermann Haken [5], and the surveys and collections in [2], [3], [4].

Meinhardt and Gierer have carried out computer simulations, over many years,
in the framework of activator inhibitor systems. On the one hand these seek to
simulate biological context, and on the other hand they demonstrate Turing’s idea
impressively. Meinhardt’s wonderful book [9] abounds with computer simulations
of real patterns on sea shells, that reflect the temporal development z(t, x) of con-
centrations in nonlinear reaction-diffusion systems with Turing instabilities; see
Figure 8.3. The book is prefaced with a quote from “Doctor Faustus” by Thomas
Mann [8]. The father, Jonathan, of Adrian Leverkühn who later becomes a com-
poser and signs a contract with the Devil, ponders the diversity of patterns in his
snail collection “to speculate the elements”:
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Figure 8.3. Photograph (left) and mathematical simulation
(right) of Oliva pophyria; see [9]

“It has turned out to be impossible to get at the meaning of these
marks. Unfortunately, my dears, such is the case. They refuse
themselves to our understanding, and will, painfully enough,
continue to do so. But when I say refuse, that is merely the
negative of reveal – and that Nature painted these ciphers, to
which we lack the key, merely for ornament on the shell of her
creature, nobody can persuade me. Ornament and meaning al-
ways run along each other; the old writings too served for both
ornament and communication. Nobody can tell me that there is
nothing communicated here. That it is an inaccessible commu-
nication, to plunge into this contradiction, is also a pleasure.”

And Thomas Mann himself, alias Serenus Zeitblom, muses on:

Did he think, if it were really a case of secret writing, that Nature
must command a language born and organized out of her own
self? For what man-invented one should she choose, to express
herself in?

Only five years after the appearance of these lines Alan Turing may have unlocked
this cipher of self-organization. Maybe, and certainly only partially so – but in the
universal language of mathematics.
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